The Combined Kreon and PolyWorks® Solution Revives Welter Racing No. 9 at Le Mans 

 

At the 2023 edition of the Le Mans Classic motor race, held under the 24 Hours of Le Mans Centenary banner, the Welter Racing (WR) team received an especially warm welcome from enthusiasts during the initial runs of its No. 9 car.

Those who appreciate fine mechanical engineering were able to travel back in time to the French team’s heyday, in 1995, when Welter Racing placed its No. 8 and No. 9 cars in pole position at the start of the race. It was an extraordinary achievement for a private French team to finish ahead of the prestigious Ferrari and McLaren teams.

Thirteen years after it last took part in the 24 Hours of Le Mans, Welter Racing now turns to the preservation of its heritage while focusing on historical motor racing.

“And what better symbol than to return to the 24 Hours of Le Mans Centenary with our most emblematic car?” says Rachel Welter, Manager at Welter Racing. Thus, the decision was made to enter No. 9, despite the many challenges involved.

The Challenge

Five months to prepare and digitize the car

It began with a desire to field the actual car instead of a copy or a rebuild. “The car must keep its soul,” says Ms. Welter. “And to keep its soul, we had to preserve the original parts.

The team had a significant problem, however, since very few spare parts were available: “Considering the small size of the team, cars were built on a unit-by-unit basis at the time and in a fairly ‘artisanal’ way,” says Alexandre Laurent, head of Welter Racing’s research and engineering department. “This explains the lack of traceability, plans, or molds. The only plans existed on tracing paper and they faded away over time. Preserving history was not on our agenda.” 

 

The simplicity of the PolyWorks software platform makes it incredibly intuitive and easy to use (shown here, the complete scan of the WR LM94 chassis in PolyWorks|InspectorTM).

The Solution

The absence of any “memory” meant that parts, or even the entire car, could not be remanufactured in the event of equipment failure. Only approximate parts could be made, none of which would have been identical to those from the original car. “So, we decided to create a digital memory of the entire car in its current state while preparing No. 9. in parallel. This meant scanning every part, including the body, flat floor, and extractors, while integrating every support with the chassis, the chassis itself, the pedal carriage layout, etc.,” says Mr. Laurent, listing only a few of the parts involved.

This required the digitization of an enormous number of parts, bearing in mind that there was very little time between the decision to enter the Le Mans Classic 2023 and the start date of the race. “We only had five months ahead of us when, under normal circumstances, this would have taken between a year and a year and a half, working full time,” says Mr. Laurent. 

With research experience in the retrofitting of electric vehicles, Mr. Laurent initially turned to a competing solution. “Despite the comfortable working conditions involved, we still had to combine it with photogrammetry to ensure a correct alignment,” he says, regretfully.

 

The repeatability and reliability of Kreon Technologies’ Ace measuring arm (shown here, the chassis scan) go well beyond those of competing solutions.

The Kreon measuring arm combined with PolyWorks

Mr. Laurent was immediately won over by this solution after a presentation of the Ace measuring arm by Kreon Technologies, combined with a Skyline Wide laser scanner and InnovMetric’s PolyWorks software platform. “It must be the fastest sale Kreon Technologies has ever made,” he says, laughing.

“The fact that our partner is a company with an eye on association and heritage preservation does not mean that we can’t provide it with industrial tools,” says Loïc Marquet, Regional Sales Manager at PolyWorks Europa, InnovMetric’s French subsidiary. “Kreon Technologies, one of our equipment partners, did not hesitate to suggest PolyWorks as a solution to meet the productivity needs of customers like Welter Racing.”

The Benefits

Mr. Laurent’s enthusiasm clearly attests to the advantages of the combined solution from Kreon Technologies and InnovMetric: “The measuring arm’s capabilities in terms of repeatability and reliability go far beyond those of the initial, competing solution. The simplicity of the software platform makes it incredibly easy to use.

This characteristic became essential with the constant use of the measuring arm: as soon as a mechanical part was dismantled, it was scanned.

And if a hole appeared on the surface, all you had to do was rescan it, thanks to the real-time polygon mesh functionality. Meanwhile, the selection tools available in PolyWorks enable us to remove the support, 'clean up' pixels, and more. The service providers used for our previous solutions always charged us to 'clean' the parts, then to 'clean' the scans. Parts that used to take half a day to scan, or even a full day, could now be scanned in half an hour, or an hour at the most,” says Mr. Laurent, who goes on to highlight the ease with which even an aluminum chassis can be scanned, along with parts in brilliant black or chrome.

The noticeably short scan times also meant that certain parts could be remanufactured in record time. These included a “leaky” exchanger, 16-inch diameter rims that no one currently manufactures, the fuel tank and airbox that were modified to fit the new turbo since the older one no longer exists, and a rear driveshaft that broke under supercharged pressure during the race.

For the wheels, where the brake calipers lick the rim – we have no more than 2 mm of play here – we removed the specific inner hub, scanned the hub and rim, then rebuilt it to design the new hub for the new rim,” says Mr. Laurent. “The rims were manufactured by Braid. We were able to make sure that everything was always moving along perfectly, and once we received them, the new rims were fitted without any problems.

Future Projects

Reduce reverse-engineering time

Now that the Le Mans Classic is over, the next phase for Welter Racing involves the 3D modeling of every car component to create detached parts (mandrils, hub carriers, chassis, pedal carriage, etc.), along with a digital twin of No. 9. Plans are already underway to rebuild other cars, including a two-seater. To achieve this, the manufacturer intends to use PolyWorks|Modeler’s next-generation automatic surfacing technology, which will save a considerable amount of time.

 

The combination of high-quality scans from the outset, even if it means spending several minutes on each scan, along with good reconstruction algorithms through the PolyWorks|Modeler™  tools, will cut reverse-engineering time by half,” says Mr. Marquet. To make the most of the PolyWorks|Modeler™ features, including dimensional measurements, and the PolyWorks platform in general, PolyWorks Europa provides its customers with technical support between 8 a.m. and 5 p.m.

For us, service is fundamental, because if a PolyWorks user becomes a champion, no one will be better suited to promote our platform,” says Stefano Belotti, Vice President of Sales at PolyWorks Europa.

Reverse engineering the WR LM 94 in PolyWorks|Modeler.

 


Rachel Welter, 
Manager at Welter Racing.

More Than Satisfied

To sum up, Ms. Welter is more than satisfied with the collaboration between Kreon Technologies and PolyWorks Europa: “We managed to take the symbolic No. 9 to Le Mans in memory of Gérard Welter, and present an actual car, fully restored and operational. It is a privilege to have access to industrial tools, like the measuring arm combined with a laser scanner and the PolyWorks software, the latter of which is also used in other competitions (Formula 1, Formula E). The solution helps broaden the scope of what is possible in the restoration industry.


Alexandre Laurent, 
head of Welter Racing’s Research and Engineering department.

Choose your location and language

Choose your location

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antarctica

Antigua and Barbuda

Argentina

Armenia

Aruba

Australia

Austria

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia, Plurinational State of

Bonaire, Sint Eustatius and Saba

Bosnia and Herzegovina

Botswana

Bouvet Island

Brazil

British Indian Ocean Territory

Brunei Darussalam

Bulgaria

Burkina Faso

Burundi

Cambodia

Cameroon

Canada

Cape Verde

Cayman Islands

Central African Republic

Chad

Chile

China

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo, The Democratic Republic of the

Cook Islands

Costa Rica

Côte d'Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czech Republic

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Ethiopia

Falkland Islands (Malvinas)

Faroe Islands

Fiji

Finland

France

French Guiana

French Polynesia

French Southern Territories

Gabon

Gambia

Georgia

Germany

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Heard Island and McDonald Islands

Holy See (Vatican City State)

Honduras

Hong Kong

Hungary

Iceland

India

Indonesia

Iran, Islamic Republic of

Iraq

Ireland

Isle of Man

Israel

Italy

Jamaica

Japan

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Korea, Democratic People's Republic of

Korea, Republic of

Kuwait

Kyrgyzstan

Lao People's Democratic Republic

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao

Macedonia, The Former Yugoslav Republic of

Madagascar

Malawi

Malaysia

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Mexico

Micronesia, Federated States of

Moldova, Republic of

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

Netherlands

Netherlands Antilles

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestine, State of

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn

Poland

Portugal

Puerto Rico

Qatar

Réunion

Romania

Russian Federation

Rwanda

Saint Barthélemy

Saint Helena, Ascension and Tristan da Cunha

Saint Kitts and Nevis

Saint Lucia

Saint Martin (French part)

Saint Pierre and Miquelon

Saint Vincent and the Grenadines

Samoa

San Marino

São Tomé and Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Singapore

Sint Maarten (Dutch part)

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Georgia and the South Sandwich Islands

South Sudan

Spain

Sri Lanka

Sudan

Suriname

Svalbard and Jan Mayen

Swaziland

Sweden

Switzerland

Syrian Arab Republic

Taiwan, Province of China

Tajikistan

Tanzania, United Republic of

Thailand

Timor-Leste

Togo

Tokelau

Tonga

Trinidad and Tobago

Tunisia

Türkiye

Turkmenistan

Turks and Caicos Islands

Tuvalu

Uganda

Ukraine

United Arab Emirates

United Kingdom

United States

United States Minor Outlying Islands

Uruguay

Uzbekistan

Vanuatu

Venezuela, Bolivarian Republic of

Viet Nam

Virgin Islands, British

Virgin Islands, U.S.

Wallis and Futuna

Western Sahara

Yemen

Zambia

Zimbabwe

Choose your language

Confirm